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Lunar Ranging Measurements using 23-cm Radar

Sunny He

Abstract

Earth-based astronomical radar has historically used very high transmitted power
for high-resolution imaging. However, DSP techniques show opportunities to conduct
lower-power operations over the Earth-Moon-Earth path, as shown by the increasing
popularity of amateur Earth-Moon-Earth communications. This project presents the
design and implementation of RF hardware and digital signal processing software to
enable 23-cm wavelength monostatic radar measurements on the TLM-18 dish. Using
a Costas-10 code transmitted with 250W of output power, the distance to the moon
was determined to be 350000± 10000km. Distance measurements agree with accepted
values to within 4%, and possible sources of error are discussed. The work presented
here demonstrates the viability of using commercially available RF hardware to perform
astronomical measurements and bringing radio astronomy within the grasp of smaller
institutions and interested individuals.
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1 Introduction

This project involves the design and implementation of various software and hardware

systems to enable 23-cm wavelength lunar ranging experiments on the TLM-18 dish. This

chapter aims to introduce the motivation behind the development of this low-power astro-

nomical radar system and give some background on the TLM-18 dish facility.

1.1 Motivation

The history of active radar measurements of the solar system objects is almost as old

as radar itself. In fact, the site at which the TLM-18 dish is located was host to the 1946

research e↵ort Project Diana, which used high-power modified military radars to measure

the distance to the Moon[1]. Since then, the Moon has been the subject of much study with

active radar, with increasingly larger telescopes using higher power levels to perform higher

resolution mapping and study of finer surface details of the Moon. For instance, during the

1960’s and 1970’s the Arecibo and Haystack Observatories completed detailed radar maps

of the Moon using wavelengths between 7.5m and 3.8cm with transmitted powers ranging

from 0.2 to 1 MW[2]. While these large installations are capable of incredible sensitivity and

resolving power, they bring with them complexity and cost.

While high-power planetary radar capable of kilometer-scale imaging may be out of the

question for smaller institutions or individuals, developments in digital signal processing

and software defined radio have made exploration of the Earth-Moon-Earth (EME) path far

more accessible. In particular, the amateur radio community has make significant progress

in the development of EME as a medium for communications. With the release of advanced

digital protocols such as JT65, the lower signal strengths of small-scale hardware can be

compensated for by more robust protocols and software processing [3].

This project aims to apply a similar approach to the question of astronomical radar, by

using DSP techniques to increase the overall performance of hardware systems. Coupled with
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the recent availability of lower-cost software defined radios such as the Ettus USRP line, it

is hoped that astronomical radar techniques can be implemented on more modest hardware

setups. Demonstrating the viability of constructing smaller-scale radio telescopes would help

reduce the traditionally large capital investments associated with radio astronomy and bring

this field within the grasp of smaller institutions and interested individuals.

1.2 TLM-18 Dish

The dish used for this project is a 18m diameter parabolic dish located at the Camp

Evans Historic District in Wall Township, NJ about 60km East of Princeton University.

This dish was constructed in the 1960’s as a tracking antenna used by the United States Air

Force for missile tracking and satellite telemetry reception [4]. The dish is designed to be

capable of tracking in altitude and azimuth at a rate of up to 10�/sec and had an original

half-power beamwidth of 5.2� [4].

7



Figure 1: Exterior view of TLM-18 dish

This dish was transferred to the InfoAge Science Center in 2012, and Professor Dan

Marlow and Dr. Norm Jarosik have been heavily involved in the refurbishing of mechani-

cal components and installation of new receiving hardware. A new feedhorn tuned to the

21cm wavelength band was installed at this time, as well as hardware for amateur EME

communications.

2 System Design

A number of di↵erent hardware components were added to implement the necessary

transmit capability. Systems were constructed and tested on campus before being installed

at the TLM-18 dish site. This section focuses on the technical details of the receive, transmit,

and control circuitry.
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2.1 Receive Hardware

The majority of the receive RF hardware was repurposed from previous projects using

the dish. The feedhorn provides two RF connections, one for vertical polarization and one

for horizontal polarization. For this project, only the vertical polarization was used for

transmitting and taking measurements. While it would be possible to use two receivers in

parallel to capture both polarizations, the added complexity was judged to be out of scope

for this project and proved to be unnecessary.

A series of Low-Noise Amplifiers and filters condition the incoming signal before being

fed into the receivers. The YIG filter is a tunable band-pass filter and was set to pass the

1.296GHz band of interest. A block diagram of the receive hardware is shown in Figure 2.

Figure 2: RF receive path block diagram (figure reproduced from [5]).

A Ettus USRP B210 Software Defined Radio was used as the transmitter and receiver.

The USRP is controlled by a computer over USB3 in full duplex mode, concurrently sending

received samples and sample values to transmit.

2.2 Transmit Hardware

While the USRP B210 is capable of transmitting at the required frequency, its output

power is only rated to a maximum of 10dBm. The existing Kuhne MKU PA 23CM-250W
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CU Power Amplifier had a required drive level of 4 to 6W with a maximum of 10W, or 16.0 to

37.8dBm with a maximum of 40dBm. Thus, a pre-amplifier would be necessary to increase

the USRP’s transmitted signal to a level su�cient to drive the power amplifier without

overloading the amplifier. To determine the needed gain, the USRP’s transmit power at

1.296GHz was measured with a laboratory RF power meter. The software used to control

the USRP used arbitrary value from 0 to 90 to represent the power level, so this was also a

useful opportunity to relate the software drive values to actual power measurements.

Figure 3: USRP transmit power characteristics.

The USRP’s maximum output power peaked at 13.5dBm, slightly above its rated value.

With this knowledge, a Kuhne MKU PA 23CM-30W HY amplifier was selected to serve as a

pre-amplifier. With a rated gain of at least 24dB, this amplifier was more than su�cient to

drive the output amplifier. The unit received was measured to have a gain of about 35.3dB,

so a series of attenuators were added between the USRP output and amplifier input to avoid

overloading the power amplifier input. In addition, a simple interface circuit was built to

allow the USRP to toggle the 12V amplifier enable lines with its on board GPIO pins.
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A block diagram of the transmit hardware is shown in Figure 4.

Figure 4: RF transmit path block diagram.

This configuration gives a final transmit power of 250W at 1.296GHz at the amplifier

output.

2.3 Installation

All hardware components were mounted on metal panels for installation at the TLM-18

site. RF signals were broken out to connectors so that the system could be easily reconfigured

with patch cables with minimal disruption to the existing setup.
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Figure 5: Transmit hardware mounted on panel.

Figure 6: Panels installed in TLM-18 operator console.

3 Costas Codes and Waveform Generation

Due to the large distance and high relative velocity between the receiver on the Earth

and the Moon, the received echo would have large time shift due to travel time and fre-
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quency Doppler shift. A class of multiple-frequency-shift-keyed codes called Costas codes

were chosen for their low correlation ambiguity in both the time and frequency axes.

3.1 Costas Code Properties

Costas codes are composed of a sequence of frequency-hopping pulses of equal length and

spaced equally in the frequency domain[6]. Thus they can also be visualized as a sequence of

symbols sent via multiple-frequency-shift-keying. For certain sequences of frequency changes,

Costas demonstrated that the waveform will exhibit very low ambiguity, representing a low

chance of false positives when the received echo is correlated with the transmitted wave-

form. Furthermore, these Costas codes are very sensitive to shifts in frequency, providing an

excellent way to detect the Doppler shift of a received echo.

For this project, a Costas code of length 10 was used, with the 10 pulses sent in 0.1 sec.

The specific frequency pattern was 2,4,8,5,10,9,7,3,6,1 [6]. Thus, the first pulse of length

0.01 sec has frequency 2⇥ 1
0.01sec = 200 Hz, the second pulse has frequency 4⇥ 1

0.01sec = 400

Hz, and so on. The complex waveform was generated using Numpy. The spectrogram of the

full code waveform is shown in Figure 7.

Figure 7: Costas-10 code waveform spectrogram.
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3.2 Simulation

The range-doppler correlation properties of the Costas-10 waveform were verified using

Numpy simulations. Cross-correlation f ? g of time domain signals f(t) and g(t) is imple-

mented as convolution with a conjugated, time-reversed copy of the Costas-10 waveform. In

mathematical notation,

f(t) ? g(t) = f ⇤(�t) ⇤ g(t) (1)

A computationally e�cient method of calculating the cross-correlation can be derived by

taking advantage of the convolution theorem. Taking the Fourier transform of Equation 1,

F{f ? g} = F{f ⇤(�t) ⇤ g(t)} (2)

F{f ? g} = F{f(t)}⇤ · F{g(t)}} (3)

f ? g = F�1{F{f(t)}⇤ · F{g(t)}} (4)

The time domain cross-correlation of the Costas-10 waveform with itself, reveals a sharp

peak at a shift of 0 with quickly receding sidelobes at larger shift amounts. The autocor-

relation shows a respectable 7dB amplitude separation from the main peak to the largest

sidelobe, setting an upper estimate for the SNR increase this code can provide.
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Figure 8: Costas-10 code time-domain autocorrelation.

4 Data Acquisition and Post-Processing

4.1 GNURadio Flowgraph

Control of the USRP software defined radios was accomplished using the GNURadio

open-source software package. GNURadio provides C++ and Python libraries for construct-

ing DSP algorithms by chaining together various modules. A Python script was written to

configure the USRP SDR’s, read the Costas-10 waveform from a file and pass the samples to

the USRP transmitter, and record received complex I/Q samples to a separate file. The first

version of the data recording script was written with a graphical interface allowing the user

to manually activate and deactivate the transmitter and GPIO pins controlling the trans-

mit/receive enable circuitry. An updated version uses threading to automatically activate

and deactivate the transmitter after set amounts of time. The GNURadio flowgraph was

configured to receive and transmit samples at a 1MHz sampling rate, referenced from the

GPS-locked clock on the USRP software defined radios. The recorded complex samples were
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then analyzed using SciPy.

In total, ten usable trials were recorded on the TLM-18 dish on December 10, 2016

between 21:39 and 22:20 UTC. In each trial, the transmitter was enabled for a period of

about one second, and the waveform was repeated multiple times within that transmission

period. A half second delay was inserted before the start of transmission to give time for

the amplifiers to activate. A sample spectrogram for one recording run is shown in Figure

9. The crosstalk from the transmission and echo from the moon are both clearly visible.

Figure 9: Example spectrogram of scaled recorded data.

4.2 Cross-correlation

A Python script was written to perform cross-correlation on the received data using

SciPy. The process of time-domain correlation was similar to that used in the simulation

of the Costas-10 waveform. However, to account for Doppler shift, the cross-correlation

was repeated with frequency-shifted copies of the original waveform. This produced a 2D

correlation matrix, with time on one axis and frequency on the other. By locating maxima

in this Range-Doppler matrix, the time and frequency of instances of the Costas-10 code
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could be easily calculated.

Figure 10: Example range-doppler plot near beginning of echo.

The crosstalk from the outgoing transmission provides a useful timestamp for measuring

the time the signal took to reach the moon and return. The di↵erence in time between the

start of transmission of the Costas-10 waveform and the start of the echo �T represents the

round trip time, which can then be converted to a distance using the speed of light C.

d =
�T

2C
(5)

4.3 Sample Rate Recovery

One issue discovered during the data analysis was that there appeared to be serious

discrepancies in the time scaling of the recorded data. Even visual inspection of the recorded

data revealed that the round-trip time measured from the start of transmission to the arrival

of the echo was about half the expected value. In addition, while the software was configured

to start transmitting 0.5 sec after the start of the script, the recorded data would show the

crosstalk start much earlier, around 0.3 sec.
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Figure 11: Example spectrogram of raw data, without sample rate correction.

Upon further examination it was found that running the graphical interface while per-

forming recordings was causing excessive load on the computer which was interfacing with

the USRP. This in turn was causing indications of dropped samples in the recorded data,

as the computer failed to keep up with the steady stream of samples the USRP receiver

was pushing out at 1MHz. As a result, the e↵ective recorded rate was less than the defined

1MHz, but by an unknown amount.

To recover the timing of the data, the assumption was made that samples were being

dropped at a fairly consistent rate, such that the sample loss could be modeled as a linear

scaling of the sample rate. 5 test trials taken without the graphical interface and showing no

packet loss events demonstrated that the start of the crosstalk arrived consistently 0.523±

0.0001sec after the start of recording. By counting the number of samples of delay in the

data sets with dropped samples, this metric could be used to calculate an “actual” sample

rate for each data set. The results of this process are presented in Table 1.
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Trial
Number

“Actual”
Sample Rate (Hz)

Round Trip
Time (sec)

Earth-Moon
Distance (km)

1 656719 2.307 345839
2 656643 2.308 345921
3 662131 2.307 345814
4 642116 2.388 357998
5 643052 2.364 354283
6 650329 2.345 351518
7 649577 2.343 351194
8 660327 2.307 345768
9 641099 2.380 356727
10 661004 2.253 337681
Average 652300 2.330 349274
2� 16346 0.083 12422

Table 1: Round Trip Time and Distance Results

5 Conclusion

The TLM-18 dish was successfully upgraded with the hardware systems necessary to

perform ranging experiments at 23-cm wavelength. The round trip time for a signal to

traverse the Earth-Moon-Earth path was measured to be 2.33± 0.08sec, corresponding to a

Earth-Moon distance of 350000± 10000km.

However, there remains a systematic error in these measurements. Calculations based

on accepted lunar orbit data place the expected distance to the moon between 364043 and

364006 km during the observation period [7]. As noted earlier, this is likely a symptom of

dropped samples during recording, which would artificially decrease the number of samples

recorded between the transmission and the echo, thereby causing the observed round-trip-

time to be shorter than expected. While a second data collection session could not be

conducted during the course of this project due to unexpected mechanical issues in the

TLM-18’s tracking systems, the systems and software remains in place for when these issues

may be resolved.

Other possible directions for further development include further enhancement of the

TLM-18 systems or adaptation of the software to more generalized setups. The current
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TLM-18 setup requires physical operator presence to monitor the operation and switching

of the various mechanical and electrical systems. While data collection can be performed

remotely by logging into the control computer over the network, it would be helpful to refine

and test the integration and actuation of other components such that physical presence is no

longer mandatory, thereby increasing the availability of the TLM-18 dish. Furthermore, the

software developed for this project could potentially be used for ranging experiments with

other radios. Adaptation of the Numpy analysis scripts to generate and accept real-valued

audio samples would allow ranging experiments on traditional voice transceivers, which are

far more common than the USRP software-defined-radios used in this project.

Overall, this project demonstrates the viability of performing Earth-based active radar

astronomy with relatively low-cost experimental setups. It is hoped that the methods used

and problems encountered will be instructive for others seeking to begin their own foray into

the field of radar astronomy.

Appendices

A Python Source Code

A.1 correlate.py

Used for performing autocorrelation simulations on Costas codes and tests of correlation

routines.

1 from scipy import signal

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5 costas = np.fromfile(open("costas10_64k.dat"), dtype=np.complex64)
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6 #data = np.fromfile(open("out.dat"), dtype=np.complex64)

7 data = np.pad(costas, (500,500), ’constant’, constant_values = 0)

8

9

10 # Autocorrelation

11 plt.figure(1);

12 plt.title("Code Autocorrelation");

13

14 timedomain = np.abs(np.correlate(costas,np.pad(costas, (500,500), ’constant’,

constant_values = 0)))

15 timedomain /= timedomain.max();

16

17 plt.plot(np.arange(-500,501,1), timedomain);

18 plt.xlabel(’Time Shift (samples)’);

19 plt.ylabel(’Normalized Response’);

20 plt.xlim([-500,500]);

21 #plt.plot(np.abs(signal.fftconvolve(costas,costas[::-1],mode="full")));

22

23 print 10 * np.log10(timedomain[signal.argrelmax(timedomain)])

24

25 # FFT correlation

26 fft_costas = np.fft.fft(costas, n = 2048);

27 fft_data = np.fft.fft(data, n = 2048);

28 fft_corr = np.fft.ifft(fft_costas.conjugate() * fft_data);

29 #fft_corr = signal.fftconvolve(costas, data[::-1],mode="full");

30

31 fft_corr = np.abs(signal.argrelmax(fft_corr)) / fft_corr.max();

32 print fft_corr[signal.argrelmax(fft_corr)]

33
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34 # Doppler correlation

35 plt.figure(3)

36 plt.title("Doppler correlation");

37 doppler_corr =

np.correlate(np.abs(fft_data),np.abs(np.pad(fft_costas,(128,128),’constant’,

constant_values = 0)))

38 plt.plot(np.arange(-128,129,1), doppler_corr);

39 plt.axvline(x=np.argmax(np.abs(doppler_corr)) - 128, ymin=0, ymax=1.0,

color="black", linestyle="dashed")

40 print "Doppler: ", np.argmax(doppler_corr) - 128;

41

42 print doppler_corr

43 doppler_corr = np.abs(signal.argrelmax(doppler_corr));

44 doppler_corr /= doppler_corr.max();

45 print doppler_corr[signal.argrelmax(doppler_corr)]

46

47 #plt.plot(np.abs(fft_costas));

48

49 # Cross Correlation

50 corr = np.correlate(data, costas);

51 print "Direct Peak: ", np.argmax(np.abs(corr));

52 print "FFT Peak: ", np.argmax(np.abs(fft_corr));

53

54 plt.figure(2);

55 plt.subplot(211)

56 plt.title("Direct cross correlation");

57 plt.plot(np.abs(corr));

58 plt.axvline(x=np.argmax(np.abs(corr)), ymin=0, ymax=1.0, color="black",

linestyle="dashed")

22



59

60 plt.subplot(212)

61 plt.title("FFT cross correlation");

62 plt.plot(np.abs(fft_corr));

63 plt.axvline(x=np.argmax(np.abs(fft_corr)), ymin=0, ymax=1.0, color="black",

linestyle="dashed")

64

65 plt.show();

A.2 generate costas.py

Generates a Costas-10 waveform at the specified sample rate and saves the complex I/Q

samples to a file.

1 import numpy as np

2 import matplotlib.pyplot as plt

3 import sys

4

5 costas_pattern = np.matrix([2,4,8,5,10,9,7,3,6,1]);

6

7 # Set sample rate

8 if len(sys.argv) > 1:

9 sample_rate = int(sys.argv[1]);

10 else:

11 sample_rate = 32000;

12

13 # Set output filename (ex. costas10_32k.dat)

14 if sample_rate > 1000:

15 filename = ’costas’ + str(costas_pattern.size) + ’_’ +
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str(sample_rate/1000)+’k.dat’

16

17

18 pulse_per_sec = 100.0;

19 delta_f = pulse_per_sec;

20

21 if delta_f * np.max(costas_pattern) >= sample_rate / 2:

22 print ’WARNING: max freq’, delta_f * np.max(costas_pattern), ’violates

Nyquist rate’

23

24 costas = costas_pattern.transpose() * np.ones((1, (sample_rate /

pulse_per_sec)));

25 costas = costas.reshape(costas.size);

26

27 t = np.arange(0.0, costas.size) / sample_rate;

28 t = t.reshape((1,t.size));

29

30 phase = 2 * np.pi * np.cumsum(costas * delta_f) / sample_rate

31 FSK = np.exp(1j * phase);

32

33 print FSK.size, ’samples’

34 print ’Saving to:’, filename;

35 FSK.astype(np.complex64).tofile(filename);

36

37 PLOT = 0;

38

39 if PLOT:

40 plt.figure(1);

41 plt.plot(t.transpose(), np.real(FSK.transpose()))
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42 plt.xlabel(’time [s]’);

43

44 plt.figure(2);

45 FSK_fft = np.fft.fft(FSK, n = 2048).transpose();

46 plt.plot(np.fft.fftshift(FSK_fft));

47

48 plt.show();

A.3 generate callsign.py

Generates a CW waveform encoding callsign in morse code for identification purposes.

1 import numpy as np

2 import scipy.io.wavfile as sciowav

3 import matplotlib.pyplot as plt

4 import scipy.signal

5

6 # dot = 30ms / WPM

7

8 WPM = 30;

9 sample_rate = 64000;

10 frequency = 450;

11 filter_cutoff = 600;

12

13 callsign = np.array([1,0,2,0,0,0,

14 2,0,2,0,1,0,0,0,

15 2,0,1,0,1,0,1,0,1,0,0,0,

16 2,0,2,0,1,0,0,0,

17 1,0,2,0,1,0,0,0,0,0,0]);
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18

19 # Generate waveforms for space, dot, and dash

20 sec_per_dot = 1.2 / WPM;

21 print "Sec/dot: ", sec_per_dot;

22 print "Samples/dot: ", sec_per_dot * sample_rate;

23

24 space = np.zeros(int(sec_per_dot * sample_rate));

25 print "Space len: ", space.size;

26 dot = np.exp(frequency * 2j * np.pi * np.arange(0, sec_per_dot, 1.0 /

sample_rate));

27 print "Dot len: ", dot.size;

28 dash = np.exp(frequency * 2j * np.pi * np.arange(0, 3 * sec_per_dot, 1.0 /

sample_rate));

29 print "Dash len: ", dot.size;

30

31 # Concat symbols to make up complete callsign

32 out = np.array([]);

33 for i in range(0, callsign.size):

34 if callsign[i] == 0:

35 out = np.concatenate((out, space));

36 elif callsign[i] == 1:

37 out = np.concatenate((out, dot));

38 elif callsign[i] == 2:

39 out = np.concatenate((out, dash));

40 else:

41 print "Invalid value: ", callsign[i];

42

43 # LPF to avoid discontinuities

44 b, a = scipy.signal.butter(6, filter_cutoff * 2.0 / sample_rate, btype=’low’,
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analog=False)

45 out_filtered = scipy.signal.lfilter(b, a, out);

46

47 #plt.plot(np.abs(out_filtered));

48 #plt.show()

49

50 # Write wav file

51 sciowav.write("callsign.wav", sample_rate,

(np.imag(out_filtered)*32767).astype(np.int16));

52 # Write complex file

53 out_filtered.astype(np.complex64).tofile("callsign.dat");

A.4 USRP Costas NoGUI.py

Python script using GNURadio to perform an automated transmission and receive cycle.

1 #!/usr/bin/env python2

2 # -*- coding: utf-8 -*-

3 ##################################################

4 # GNU Radio Python Flow Graph

5 # Title: USRP_Costas_NoGui

6 # Generated: Wed Dec 21 16:16:38 2016

7 #

8 # Usage: python USRP_Costas_NoGUI.py [tx_file] [rx_file] [samp_rate]

9 ##################################################

10

11 from gnuradio import analog

12 from gnuradio import blocks

13 from gnuradio import eng_notation
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14 from gnuradio import gr

15 from gnuradio import gr, blocks

16 from gnuradio import uhd

17 from gnuradio.eng_option import eng_option

18 from gnuradio.filter import firdes

19 from optparse import OptionParser

20 import sys

21 import threading

22 import numpy

23 import time

24

25

26 class top_block(gr.top_block):

27

28 def __init__(self):

29 gr.top_block.__init__(self, "Top Block")

30

31 ##################################################

32 # Variables

33 ##################################################

34 self.tx_gain = tx_gain = 40

35 self.rx_gain = rx_gain = 40

36 self.lo_frequency = lo_frequency = 0

37 self.lo_amplitude = lo_amplitude = 1

38 self.COSTAS_LEN = COSTAS_LEN = 10

39

40 self.samp_rate = samp_rate = 1000000;

41 if len(sys.argv) > 3:

42 self.samp_rate = samp_rate = int(sys.argv[3]);
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43 print(’Sample Rate: ’ + str(self.samp_rate));

44 print(samp_rate);

45

46 self.TX_FILENAME = TX_FILENAME = ’costas’ + str(COSTAS_LEN) + ’_’ +

str(samp_rate/1000)+’k.dat’

47 if len(sys.argv) > 1:

48 self.TX_FILENAME = TX_FILENAME = sys.argv[1];

49 print(’Transmitting from file: ’ + self.TX_FILENAME);

50

51 self.RX_FILENAME = RX_FILENAME = ’rx.dat’

52 if len(sys.argv) > 2:

53 self.RX_FILENAME = RX_FILENAME = sys.argv[2];

54 print(’Writing data to file: ’ + self.RX_FILENAME);

55

56

57

58 ##################################################

59 # Blocks

60 ##################################################

61 print(’===== Initializing USRP =====’);

62 self.uhd_usrp_source_0 = uhd.usrp_source(

63 ",".join(("serial=30AD2A4", "")),

64 uhd.stream_args(

65 cpu_format="fc32",

66 channels=range(1),

67 ),

68 )

69 self.uhd_usrp_source_0.set_samp_rate(samp_rate)

70 self.uhd_usrp_source_0.set_center_freq(1296e6, 0)
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71 self.uhd_usrp_source_0.set_gain(rx_gain, 0)

72 self.uhd_usrp_source_0.set_antenna(’RX2’, 0)

73 self.uhd_usrp_sink_0 = uhd.usrp_sink(

74 ",".join(("", "")),

75 uhd.stream_args(

76 cpu_format="fc32",

77 channels=range(1),

78 ),

79 )

80 self.uhd_usrp_sink_0.set_samp_rate(samp_rate)

81 self.uhd_usrp_sink_0.set_center_freq(1296e6, 0)

82 self.uhd_usrp_sink_0.set_gain(tx_gain, 0)

83 self.uhd_usrp_sink_0.set_antenna(’TX/RX’, 0)

84 self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)

85 self.blocks_file_source_0 = blocks.file_source(gr.sizeof_gr_complex*1,

self.TX_FILENAME, False)

86 self.blocks_file_meta_sink_0 =

blocks.file_meta_sink(gr.sizeof_gr_complex*1, RX_FILENAME, samp_rate,

1, blocks.GR_FILE_FLOAT, True, 10000000, "", False)

87 self.blocks_file_meta_sink_0.set_unbuffered(False)

88 self.blocks_delay_0 = blocks.delay(gr.sizeof_gr_complex*1, samp_rate/2)

89 self.LO_sig_source = analog.sig_source_c(samp_rate, analog.GR_COS_WAVE,

lo_frequency, lo_amplitude, 0)

90

91 print self.uhd_usrp_sink_0.get_samp_rate()

92 print "RX: ", self.uhd_usrp_source_0.get_samp_rate()

93

94 # GPIO sequencer, run in separate thread

95 def _function_probe_gpio():
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96 print(’===== GPIO Thread begin =====’);

97 # ----- Initialize GPIO ----- #

98 print(’Initalizing GPIO’);

99 # Set all pins (mask 0xff) to GPIO mode (value 0) on mboard 0

100 self.uhd_usrp_sink_0.set_gpio_attr(’FP0’,’CTRL’, 0, 0xff, 0);

101 # Set all pins to Output direction (value 1)

102 self.uhd_usrp_sink_0.set_gpio_attr(’FP0’,’DDR’, 0xff, 0xff, 0);

103 # Set all pins to logic high

104 self.uhd_usrp_sink_0.set_gpio_attr(’FP0’,’OUT’, 0xff, 0xff, 0);

105 print(’Readback: ’ + hex(self.uhd_usrp_sink_0.get_gpio_attr(’FP0’,

’READBACK’, 0)));

106

107 print ’Keying: Set pin 0 to low’

108 self.uhd_usrp_sink_0.set_gpio_attr(’FP0’,’OUT’, 0xfe, 0xff, 0);

109 print(’Readback: ’ + hex(self.uhd_usrp_sink_0.get_gpio_attr(’FP0’,

’READBACK’, 0)));

110

111 # Transmit for 2.5 sec

112 time.sleep(2.5);

113

114 # Set all pins to logic high

115 print ’Unkeying’

116 self.uhd_usrp_sink_0.set_gpio_attr(’FP0’,’OUT’, 0xff, 0xff, 0);

117 print(’Readback: ’ + hex(self.uhd_usrp_sink_0.get_gpio_attr(’FP0’,

’READBACK’, 0)));

118

119 # Restore pins to high impedance (value 0)

120 self.uhd_usrp_sink_0.set_gpio_attr(’FP0’,’DDR’, 0, 0xff, 0);

121

31



122 # Receive for 3 sec

123 time.sleep(3);

124 print(’Stopping...’);

125 self.stop();

126

127 # Setup GPIO sequencer thread

128 self.function_probe_gpio_thread =

threading.Thread(target=_function_probe_gpio)

129 self.function_probe_gpio_thread.daemon = True

130

131

132 self.uhd_usrp_source_0 = uhd.usrp_source(

133 ",".join(("serial=30AD2A4", "")),

134 uhd.stream_args(

135 cpu_format="fc32",

136 channels=range(1),

137 ),

138 )

139

140 ##################################################

141 # Connections

142 ##################################################

143 self.connect((self.LO_sig_source, 0), (self.blocks_multiply_xx_0, 0))

144 self.connect((self.blocks_delay_0, 0), (self.blocks_multiply_xx_0, 1))

145 self.connect((self.blocks_file_source_0, 0), (self.blocks_delay_0, 0))

146 self.connect((self.blocks_multiply_xx_0, 0), (self.uhd_usrp_sink_0, 0))

147 self.connect((self.uhd_usrp_source_0, 0), (self.blocks_file_meta_sink_0,

0))

148
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149 def get_tx_gain(self):

150 return self.tx_gain

151

152 def set_tx_gain(self, tx_gain):

153 self.tx_gain = tx_gain

154 self.uhd_usrp_sink_0.set_gain(self.tx_gain, 0)

155

156

157 def get_samp_rate(self):

158 return self.samp_rate

159

160 def set_samp_rate(self, samp_rate):

161 self.samp_rate = samp_rate

162 self.uhd_usrp_source_0.set_samp_rate(self.samp_rate)

163 self.uhd_usrp_sink_0.set_samp_rate(self.samp_rate)

164 self.blocks_file_source_0.open(’costas’ + str(self.COSTAS_LEN) + ’_’ +

str(self.samp_rate/1000)+’k.dat’, True)

165 self.blocks_delay_0.set_dly(self.samp_rate/2)

166 self.LO_sig_source.set_sampling_freq(self.samp_rate)

167

168 def get_rx_gain(self):

169 return self.rx_gain

170

171 def set_rx_gain(self, rx_gain):

172 self.rx_gain = rx_gain

173 self.uhd_usrp_source_0.set_gain(self.rx_gain, 0)

174

175

176 def get_lo_frequency(self):
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177 return self.lo_frequency

178

179 def set_lo_frequency(self, lo_frequency):

180 self.lo_frequency = lo_frequency

181 self.LO_sig_source.set_frequency(self.lo_frequency)

182

183 def get_lo_amplitude(self):

184 return self.lo_amplitude

185

186 def set_lo_amplitude(self, lo_amplitude):

187 self.lo_amplitude = lo_amplitude

188 self.LO_sig_source.set_amplitude(self.lo_amplitude)

189

190 def get_COSTAS_LEN(self):

191 return self.COSTAS_LEN

192

193 def set_COSTAS_LEN(self, COSTAS_LEN):

194 self.COSTAS_LEN = COSTAS_LEN

195 self.blocks_file_source_0.open(’costas’ + str(self.COSTAS_LEN) + ’_’ +

str(self.samp_rate/1000)+’k.dat’, True)

196

197

198 def main(top_block_cls=top_block, options=None):

199

200 tb = top_block_cls()

201 print(’Starting GNURadio blocks...’);

202 tb.start()

203 # Start GPIO sequencer

204 tb.function_probe_gpio_thread.start()
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205 #try:

206 # raw_input(’Press Enter to quit: ’)

207 #except EOFError:

208 # pass

209 #tb.stop()

210 tb.wait()

211

212

213 if __name__ == ’__main__’:

214 main()

A.5 range doppler.py

Script for performing range-doppler correlation on input data and plotting the resulting

matrix.

1 from scipy import signal

2 import scipy.misc

3 import numpy as np

4 import matplotlib.pyplot as plt

5

6 # python range_doppler.py filename [fs] [decimation] [start_sample]

[num_samples] [fig_filename]

7

8 def range_doppler(filename, fs=64000, decimation=1, start_sample=0,

num_samples=0, shiftrange=1024, fft_len=65536/2):

9

10 data = np.fromfile(filename, dtype=np.complex64)

11 if num_samples > 0:
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12 data = data[start_sample:start_sample + num_samples:];

13 else:

14 data = data[start_sample::];

15

16 #costas = np.fromfile(open(’costas10_’ + str(fs/1000) + ’k.dat’),

dtype=np.complex64);

17 costas = np.fromfile(open(’costas10_1000k.dat’), dtype=np.complex64);

18

19 if decimation > 1:

20 data = signal.decimate(data, decimation, zero_phase=True);

21 costas = signal.decimate(costas, decimation, zero_phase=True);

22 fs /= decimation;

23 print (’New sample rate: ’ + str(fs));

24

25 # Generate fft of pattern

26 fft_costas = np.fft.fft(costas, n = fft_len);

27

28 # Plot spectrum

29 #plt.plot(np.fft.fftshift(fft_costas));

30 #plt.show();

31

32 # FFT correlation for 0 frequency case

33 fft_data = np.fft.fft(data, n = fft_len);

34 fft_corr = np.fft.ifft(fft_costas.conjugate() * fft_data);

35

36 # Range-doppler matrix

37 range_doppler = np.zeros((2 * shiftrange + 1, fft_len), dtype=np.complex64);

38

39 # Evaluate time-domain correlation for each fft bucket of width f_s/fft_len
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Hz.

40 # Two sided

41 for i in range(0, 2 * shiftrange + 1):

42 range_doppler[i,:] = np.fft.ifft(np.roll(fft_costas, i -

shiftrange).conjugate() * fft_data);

43 # One sided

44 #for i in range(-shiftrange - 1, 0):

45 # range_doppler[i + shiftrange + 1,:] = np.fft.ifft(np.roll(fft_costas,

i).conjugate() * fft_data);

46 return range_doppler, fs;

47

48 def plot_range_doppler(range_doppler, fs=64000, decimation=1, shiftrange=1024,

fft_len=65536/2, filename=None):

49 new_fs = fs/decimation;

50 print ’New fs: ’, new_fs

51 if filename == None:

52 plt.figure(1);

53 #plt.axis([0, fft_len, 0, 2 * shiftrange + 1])

54

55 range_doppler_abs = np.absolute(range_doppler);

56 range_doppler_abs /= range_doppler_abs.max();

57

58 plt.imshow(np.absolute(range_doppler_abs),

59 cmap=’Blues’, #RdBu

60 vmin= np.min(range_doppler_abs),

61 vmax=np.max(range_doppler_abs),

62 aspect=’auto’,

63 origin=’lower’,

64 interpolation=’nearest’,
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65 extent=(2.80164222,2.80164222 +

fft_len/float(new_fs),-shiftrange*float(new_fs)/fft_len,shiftrange*float(new_fs)/fft_len))

66 #extent=(0,fft_len/float(fs),0, 2 * shiftrange + 1))

67 plt.xlim(2.80164222, 2.80164222 + 0.07)

68 plt.ylim(1250,2500)

69 plt.title(’Range-Doppler Correlation (Focus on First Echo)’)

70 plt.xlabel(’Time (sec)’);

71 plt.ylabel(’Frequency (Hz)’);

72 plt.colorbar()

73

74

75

76

77 solution = np.unravel_index(range_doppler_abs.argmax(),

range_doppler_abs.shape)

78

79 print ’Freq: bin’, solution[0], (solution[0] - shiftrange) *

float(new_fs)/fft_len, ’Hz’;

80 print ’Delay: ’, solution[1], ’samples’, solution[1]/float(new_fs), ’sec’;

81 print "Maxiumum", range_doppler_abs.max();

82 print "Average", range_doppler_abs.mean();

83 #print np.argwhere(np.absolute(range_doppler[solution[0]]) > 12 *

np.absolute(range_doppler).mean())

84 #print

np.argwhere(np.absolute(range_doppler)>np.absolute(range_doppler).max()*.99);

85

86 rd_thresh = np.copy(range_doppler_abs)

87 rd_thresh[rd_thresh < 15 * rd_thresh.mean()] = 0;

88
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89 print signal.argrelmax(rd_thresh[solution[0]], order=new_fs/100)

90

91 plt.figure();

92 plt.title(’Range Measurement for Highest Correlation Doppler Shift’)

93 plt.ylabel(’Correlation value’);

94 plt.xlabel(’Time (sec)’);

95 plt.plot(float(decimation) * np.arange(0,

range_doppler_abs[solution[0]].size) / fs,

range_doppler_abs[solution[0]]);

96 if filename == None:

97 plt.show();

98 else:

99 plt.savefig(filename);

100

101 if __name__ == ’__main__’:

102 import sys

103 if len(sys.argv) > 1:

104 filename = sys.argv[1];

105 else:

106 print (’No filename given. Usage: python range_doppler.py filename [fs]

[decimation] [start_sample] [num_samples]’);

107

108 if len(sys.argv) > 2:

109 fs = int(sys.argv[2]);

110 else:

111 fs = 64000;

112

113 if len(sys.argv) > 3:

114 decimation = int(sys.argv[3]);
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115 else:

116 decimation = 1;

117

118 if len(sys.argv) > 4:

119 start_sample = int(sys.argv[4]);

120 else:

121 start_sample = 0;

122

123 if len(sys.argv) > 5:

124 num_samples = int(sys.argv[5]);

125 else:

126 num_samples = 0;

127

128 if len(sys.argv) > 6:

129 fig_filename = sys.argv[6];

130 else:

131 fig_filename = None;

132

133 if filename.endswith(".npy"):

134 rd = np.load(filename);

135 plot_range_doppler(rd, fs, decimation, filename=fig_filename);

136 else:

137 rd, new_fs = range_doppler(filename, fs, decimation, start_sample,

num_samples);

138 np.save(’range_doppler.npy’, rd);

A.6 plot data.py

Utility script for plotting arbitrary complex data in time and frequency domain.
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1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy import signal

4

5 def plot(data, sample_rate=64000.0, decimation=1, filename=None):

6 print "Size:", data.size,"=", data.size/sample_rate,"sec";

7

8 if decimation > 1:

9 print ’Decimating...’

10 data = signal.decimate(data, decimation,zero_phase=True);

11 sample_rate /= decimation;

12 print (’New sample rate: ’ + str(sample_rate))

13

14

15

16 print "Maximum:", np.max(data), "@", np.argmax(data);

17 print "Average:", np.mean(data);

18

19 plt.figure(1)

20 plt.plot(np.real(data));

21 plt.xlabel("Time (samples)");

22 plt.ylabel("Value");

23

24 plt.figure(2)

25 (spectrum, freqs, t, im) = plt.specgram(data, NFFT = 256, noverlap = 128, Fs

= sample_rate,interpolation=’nearest’);

26 if sample_rate * decimation == 1:

27 plt.xlabel("Time (samples)");
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28 else:

29 plt.xlabel("Time (sec)");

30 #plt.title(’Spectrum of ’ + filename[:-4]);

31 plt.title(’Costas-10 Code Spectrogram’);

32 plt.ylabel("Frequency (Hz)");

33 plt.xlim([0,data.size/sample_rate]);

34 plt.ylim([-sample_rate/2, sample_rate/2]);

35

36 print spectrum.shape;

37

38 if filename != None:

39 print(’Saving to: ’ + filename);

40 plt.savefig(filename);

41 else:

42 plt.show();

43

44 if __name__ == ’__main__’:

45 import sys

46 print sys.argv;

47 if len(sys.argv) > 2:

48 fs = float(sys.argv[2]);

49 else:

50 fs = 64000.0

51

52 if len(sys.argv) > 3:

53 decimation = int(sys.argv[3]);

54 else:

55 decimation = 1

56 plot(np.fromfile(open(sys.argv[1]), dtype=np.complex64), fs, decimation);
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A.7 GPIOControl.py

Utility script for manually configuring and toggling the GPIO pins on the USRP B210.

1 #!/usr/bin/env python2

2 # -*- coding: utf-8 -*-

3 ##################################################

4 # GNU Radio Python Flow Graph

5 # Title: Top Block

6 # Generated: Wed Dec 21 00:48:25 2016

7 ##################################################

8

9 from gnuradio import blocks

10 from gnuradio import gr

11 from gnuradio import uhd

12 import sys

13

14 USAGE_STRING = ’Usage: python GPIOControl.py get|set [pin_number] [0|1|x]’

15

16 class top_block(gr.top_block):

17

18 def __init__(self):

19 gr.top_block.__init__(self, "Top Block")

20

21 # Create USRP Source

22 self.uhd_usrp_source = uhd.usrp_source(

23 ",".join(("serial=30AD2A4", "")),

24 uhd.stream_args(
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25 cpu_format="fc32",

26 channels=range(1),

27 ),

28 )

29

30 if sys.argv[1] == ’get’:

31 print(’Getting current pin values...’);

32 val = self.uhd_usrp_source.get_gpio_attr(’FP0’, ’READBACK’, 0);

33 print(’Raw value: ’ + hex(val));

34

35 elif sys.argv[1] == ’set’:

36 pinmask = 1 << int(sys.argv[2]);

37 print(’Pinmask: ’ + hex(pinmask));

38 if sys.argv[3] == ’x’:

39 print(’Setting pin ’ + sys.argv[2] + ’ to high impedance...’);

40 # Write a logic 1 first

41 self.uhd_usrp_source.set_gpio_attr(’FP0’,’OUT’, 0xff, pinmask, 0);

42 self.uhd_usrp_source.set_gpio_attr(’FP0’,’DDR’, 0, pinmask, 0);

43 print(’Readback: ’ + hex(self.uhd_usrp_source.get_gpio_attr(’FP0’,

’READBACK’, 0)));

44 elif sys.argv[3] == ’1’:

45 # Enable GPIO Control

46 self.uhd_usrp_source.set_gpio_attr(’FP0’,’CTRL’, 0, pinmask, 0);

47 # Set pin to Output direction (value 1)

48 self.uhd_usrp_source.set_gpio_attr(’FP0’,’DDR’, 0xff, pinmask, 0);

49 print(’Setting pin ’ + sys.argv[2] + ’ to logic high...’);

50 self.uhd_usrp_source.set_gpio_attr(’FP0’,’OUT’, 0xff, pinmask, 0);

51 print(’Readback: ’ + hex(self.uhd_usrp_source.get_gpio_attr(’FP0’,

’READBACK’, 0)));
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52 elif sys.argv[3] == ’0’:

53 # Enable GPIO control

54 self.uhd_usrp_source.set_gpio_attr(’FP0’,’CTRL’, 0, pinmask, 0);

55 # Set pin to Output direction (value 1)

56 self.uhd_usrp_source.set_gpio_attr(’FP0’,’DDR’, 0xff, pinmask, 0);

57 print(’Setting pin ’ + sys.argv[2] + ’ to logic low...’);

58 self.uhd_usrp_source.set_gpio_attr(’FP0’,’OUT’, 0, pinmask, 0);

59 print(’Readback: ’ + hex(self.uhd_usrp_source.get_gpio_attr(’FP0’,

’READBACK’, 0)));

60 else:

61 print(’Invalid pin value: ’ + sys.argv[3]);

62 print(USAGE_STRING);

63 else:

64 print(’Invalid command: ’ + sys.argv[1]);

65 print(USAGE_STRING);

66

67 self.stop();

68

69

70

71 def main(top_block_cls=top_block, options=None):

72 tb = top_block_cls()

73 tb.start()

74 try:

75 raw_input(’Press Enter to quit: ’)

76 except EOFError:

77 pass

78 tb.stop()

79 tb.wait()
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80

81

82 if __name__ == ’__main__’:

83 if len(sys.argv) < 2:

84 print(USAGE_STRING)

85 else:

86 main()

46



References

[1] United Engineering Foundation. Project Diana. Sept. 2015. url: http://ethw.org/

Project_Diana.

[2] T. W. Thompson. “A Review of Earth-Based Radar Mapping of the Moon”. In: The

Moon and the Planets 20.2 (Sept. 1979), pp. 179–198. doi: http://dx.doi.org/10.

1007/BF00898069.

[3] Joe Taylor. “EME with JT65”. In: QST Magazine (June 2005).

[4] F. S. Coxe. “Operational Characteristics of the TLM-18 Automatic Tracking Telemetry

Antenna”. In: IRE Transactions on Space Electronics and Telemetry SET-5.2 (June

1959), pp. 87–91. issn: 0096-252X. doi: 10.1109/IRET-SET.1959.5008662.

[5] Norman Jarosik. “Physics 312 Pulsar Laboratory Handout”. 2016.

[6] J. P. Costas. “A study of a class of detection waveforms having nearly ideal range-

Doppler ambiguity properties”. In: Proceedings of the IEEE 72.8 (Aug. 1984), pp. 996–

1009. issn: 0018-9219. doi: 10.1109/PROC.1984.12967.

[7] Torsten Ho↵man. MoonCalc. Jan. 2017. url: http://www.mooncalc.org/#/40.

1849,-74.0565,17/2016.12.10/17:20/1.

47


